

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Tel: (02) 9737 9991 E-Mail: <u>info@stephensonenv.com.au</u>

EMISSION TEST REPORT (ETR) NO. 7107/S25705/20

STYRENE SCRUBBER EFFICIENCY MONITORING

ROCBOLT RESINS PTY LIMITED

SMEATON GRANGE, NSW 2567

PROJECT NO.: 7107/\$25705/20

DATE OF SURVEY: 14 OCTOBER 2020

DATE OF ISSUE: 30 OCTOBER 2020

NATA accredited laboratory number 15043. Accredited for Compliance with ISO/IEC 17025 - Testing

EMISSION TEST REPORT NO. 7107/S25705/20

Client

Organisation:	Rocbolt Resins Pty Limited
Contact:	Andrew Sykes
Address:	40-44 Anzac Avenue, Smeaton Grange NSW 2567
Telephone:	02 4647 8388
Email:	asykes@rocboltresins.com.au
Project Number:	7107/S25705/20
Test Date:	14 October 2020
Production Conditions:	Normal operating conditions during testing
Analysis Requested:	Dry gas density, volumetric flowrate, velocity, temperature, moisture, molecular weight of stack gases, nitrogen oxides, particulate matter less than 10 microns, volatile organic compounds including styrene and benzene
Sample Locations:	Styrene dry scrubber exhaust stack
Sample ID Nos.:	See attachment A
Identification	The samples are labelled individually. Each label recorded the testing laboratory, sample number, sampling location (or Identification) sampling date and time and whether further analysis is required.

The sampling and analysis was commissioned by:

This report cannot be reproduced except in full.

Test	Test Method Number for Sampling & Analysis	NATA Laboratory Analysis By: NATA Accreditation No. & Report No.		
Dry Gas Density	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, ETR No. 7107		
Moisture	NSW TM-22, USEPA M4	SEMA, Accreditation No. 15043, ETR No. 7107		
Molecular Weight of Stack Gases	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, ETR No. 7107		
Oxides of Nitrogen	NSW TM-11, USEPA M7E	SEMA, Accreditation No. 15043, ETR No. 7107		
Particulate Matter less than 10 microns	NSW OM-5, USEPA M201A	SEMA, Accreditation No. 15043, Particle Test Report No. 2180		
Stack Pressure	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7107		
Stack Temperature	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7107		
Velocity	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7107		
Volatile Organic Compounds (styrene, benzene, total as n- Propane)	NSW TM-34, USEPA M18	TestSafe Australia, Accreditatior No. 3726, Report No. 2020-3770		
Volumetric Flowrate	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7107		
Deviations from Test Methods	Nil			
Sampling Times	in the Test Method then as	d requirements or if not specified s per Protection of the (Clean Air) Regulations Part 2.		
Reference Conditions	NSW – As per (1) Environment Protection Licence conditions, or (2) Part 3 of the Protection of the Environment			

All associated NATA endorsed Test Reports/Certificates of Analysis are provided in Attachment A.

Issue date: 30 October 2020

terheur AU

P W Stephenson Managing Director

1.1 SCOPE OF WORK

The scope of work undertaken at Rocbolt Resins, Smeaton Grange, on October 14, 2020 is tabled below and was requested by Rocbolt Resins to address a requirement of their Environment Protection Licence (EPL) 20944.

Parameter	Styrene Scrubber Exhaust Stack	Units of Measure	NSW Approved Test Method
VOCs including Styrene and Benzene	2 samples	mg/m ³ or g/s	OM-2, TM-34
Particulate matter less than 10 microns	1 sample	mg/m ³	OM-5, USEPA 201A
Nitrogen Oxides	Continuous	mg/m ³	TM-11
Dry Gas Density	√	kg/m ²	TM-23
Moisture	√	%	TM-22
Molecular weight of stack gases	✓	g.g-mole	TM-23
Temperature	✓	К	TM-2
Velocity	✓	m/s	TM-2
Volumetric flowrate	✓	m³/s	TM-2

Key:

5		
kg/m ³	=	kilograms per cubic metre
mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
g/s	=	grams per second
%	=	percentage
g.g-mole	=	grams per gram mole
g/s	=	grams per second
°C	=	degrees Celsius
TM	=	test method
m/s	=	metres per second
m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
AS	=	Australian Standard
hr	=	hour
*	=	method agreed to by Chris Kelly, NSW EPA. Refer Benbow Environmental.

ETR V1.4

1.2 PRODUCTION AND SAMPLING CONDITIONS

Rocbolt Resins personnel considered the manufacturing facility was operating under typical conditions on the day of testing. Details of production conditions are available on request.

The following description of the process was supplied by Rocbolt Resins,

Rocbolt Resins manufactures resin capsules used as reinforcement for rocks/strata in the mining industry in conjunction with steel bolts and cables.

The capsules are a 2 part capsule, an outer plastic skin, sealed at both ends with clips and a separate inner compartment. The larger compartment consists of a highly viscous polyester resin mastic paste comprising approximately 20% polyester resin (contains Styrene monomer) & 80% inert limestone fillers. The smaller compartment consists of catalyst containing inert limestone fillers, benzoyl peroxide paste and oil or water as the carrier. The ratio of the two compartment ranges from 80:20 to 93:7 by weight.

Parameter		Unit of measure	Average Measured Concentrations 14 October 2020 Exhaust Stack	EPL Licence 20944 Limit
	(as Styrene)	mg/m ³	22	220
Styrene	(as n-propane)	mg/m ³	9.1	
	MER (as Styrene)	g/s	0.0081	
Demonstra	(as Benzene)	mg/m ³	<0.18	
Benzene	MER (as Benzene)	g/s	<6.6 X 10 ⁻⁵	
VOC (total)	(as n- propane)	g/s	0.0092	
DM	concentration	mg/m ³	<0.14	
PM_{10}	MER	g/s	<0.0001	
	concentration	mg/m ³	2	
Oxides of nitrogen	MER	g/s	0.0007 (7 X 10 ⁻⁴)	
Stack temperature		°C	24	
Velocity		m/s	6	
Volumetric flow		m ³ /s	0.37	
Moisture		%	0.5	
Molecular weight dry	v stack gas	g/g mole	28.9	
Gas Density		kg/m ³	1.29	
Stack pressure		kPa	102.7	

1.3 SUMMARY OF EMISSION TEST RESULTS – 14 OCTOBER 2020

Key:	EPL	=	Environment Protection Licence
	MER	=	Mass Emission Rate
	VOC	=	Volatile organic compounds
	mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	g/s	=	grams per second
	٥C	=	degrees Celsius
	m/s	=	metres per second
	m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	%	=	percentage
	<	=	less than
	g/g mole	=	grams per gram mole
	kg/m ³	=	Kilograms per cubic metre
	kPa	=	Kilo Pascals
		=	not specified in EPL 20944

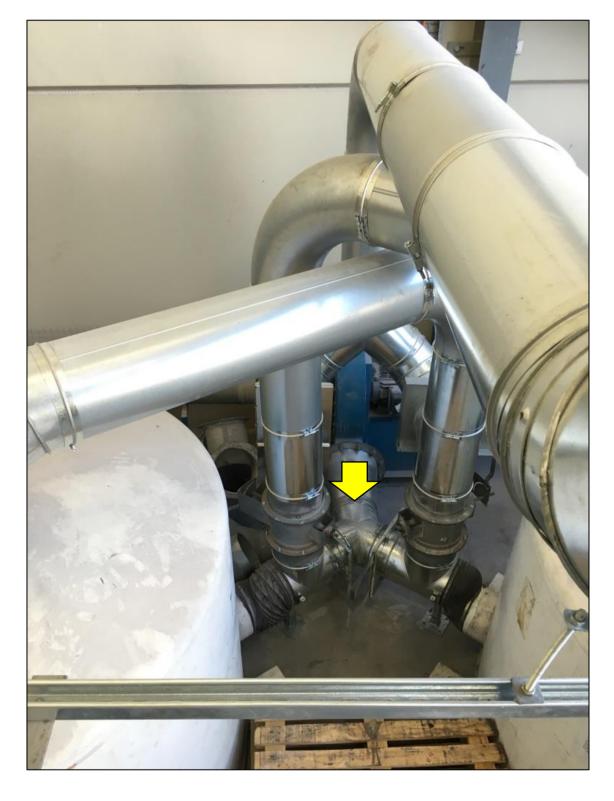
1.4 ESTIMATED UNCERTAINTY OF MEASUREMENT

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, NSW TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA M7E	15%
Oxygen and Carbon Dioxide	NSW TM-24, TM-25, USEPA M3A	1% actual
Particulate matter less than 10 microns	NSW OM-5, USEPA M201A	50%
Velocity	AS4323.1, NSW TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	NSW TM-34, USEPA M18	25%
Styrene as Volatile Organic Compound (adsorption tube)	NSW TM-34, USEPA 18	25%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK


Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

Note: ISO 9096 is for 20-1000 mg/m³⁻ which AS4323.2 is based on. Note DSEN 13284-1 testing for < 5 mg/m³ correlates to 5 mg/m³ with most quoted uncertainties of \pm 5.3 mg/m³ @ 6.4 mg/m³. From Clean Air Engineering in the United States the lowest practical limit of USEPA M5 is 5 mg/m³ under lab conditions.


1.5 DRY SCRUBBER SAMPLING LOCATIONS

PHOTOGRAPH 1 DRY CARBON SCRUBBERS AND OUTLET SAMPLE PORTS

PHOTOGRAPH 2 VARIABLE SPEED FAN EXTRACTING AIR FROM WITHIN PLANT TO SCRUBBER TOWERS IN SERIES

PHOTOGRAPH 3 DRY SCRUBBER MANUFACTURER'S DETAILS

ETR V1.4

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date	
646	Stopwatch	11-May-20	11-Nov-20	
857	Digital Temperature Reader	07-May-20	07-Nov-20	
920	Thermocouple	07-May-20	07-Nov-20	
815	Digital Manometer	06-Dec-19	06-Dec-20	
613	Barometer	05-Dec-19	05-Dec-20	
183	Pitot	17-Mar-20	17-Mar-2021 Visually inspected On-Site before use	
928	Balance		Response Check with SEMA Site Mass	
675	Personal Sampler	12-Mar-20	12-Mar-21	
764	TSI Thermal Mass Flowmeter	23-Jul-20	23-Jan-21	
946	Combustion Analyzer	02-Sep-20	02-Mar-21	
708	Gas Meter	21-Feb-20	21-Feb-21	
	Gas Mixtures used for An	alyser Span Response		
Conc.	Mixture	Cylinder No.	Expiry Date	
0.099% 9.8% 10.1%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	ALWB 5361	17-Jul-21	
100 ppm 100 ppm 100 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALTF 3709	09-Aug-23	
262 ppm 263 ppm 249 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB 4441	23-Jun-21	

1.6 INSTRUMENT CALIBRATION DETAILS

ETR V1.4

1.7 CONCLUSIONS

Emissions were monitored on the discharge side of the two dry carbon scrubbing units connected in series, at the Rocbolt Resins manufacturing facility with the following results:

- The average Styrene emission concentration (reported as Styrene) was 22 mg/m³ which was compliant with the EPL limit of 220 mg/m³. The styrene mass emission rate (MER) was less than 0.0081 grams per second (g/s).
- The average benzene MER (reported as benzene) was less than 6.6 X 10⁻⁵ g/s;
- The average total VOC MER (reported as n-propane) was 0.0092 g/s;
- $\circ~$ The average emission concentration of Oxides of Nitrogen (NO_x) (expressed as nitrogen dioxide (NO₂)) was 2.0 mg/m³. The NO_x MER was 0.0007-g/s.
- $\circ~$ The average PM_{10} emission concentration was less than 0.14 mg/m³. The PM_{10} MER was less than 0.0001 g/s.
- Rocbolt Resins advised that the variable speed extraction fan serving the scrubber system was running at its normal set point (20 Hertz) during the system efficiency testing. This is of the order of 50% of total flow;
- However, the fan speed is variable depending on demand for extraction within the plant. Rocbolt Resins advise that this is both an energy conservation and scrubber efficiency optimisation policy.

ATTACHMENT A – NATA CERTIFICATES OF ANALYSIS

Stephenson

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 E-Mai: info@stephensonenv.com.au

Particle Test Report No. 2180

The analysis was commissioned by SEMA on behalf of:

Client	Organisation:	Rocbolt Resins Pty Limited
	Contact:	Andrew Sykes
	Address:	40-44 Anzac Avenue, Smeaton Grange NSW 2567
	Telephone:	02 4647 8388
	Email:	asykes@rocboltresins.com.au
	Project Number:	7107/S25705/20
	Analysis Requested:	OM-5
	Chain of Custody Number	S25716
	Date Analysis Completed:	15 October 2020
	No. of Samples Tested:	1
	Sample Locations:	EPL ID No. 45 (Boiler 2)
	Sample ID Nos.:	728106
	Filter ID Nos.:	15399

This report cannot be reproduced except in full

NATA accredited laboratory number 15043 Accredited for Compliance with ISO/IEC 17025 - Testing

ETR V1.4

Stephenson Environmental Management Australia

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

PARTICLE TEST REPORT NO. 2180

Identification The filters are labelled individually. Each label recorded the testing laboratory, sample number, sampling location (or Identification) sampling date and time and whether further analysis is required.

 Test
 Analysis Test Method

 PM₁₀
 AS4323.2-1995 (R2014)

(NSW OM-5)

Nil

Deviations from Test Methods

Issue Date 15 October 2020

Upenn

Peter Stephenson Managing Director

Gravimetric Results - Test Report No. 2180

Sample Location	- Filte		Sampling Date	Analysis Date (Completed)	Sample Mass (g)	
Stack PM ₁₀	728106	15399	14/10/2020	15/10/2020	<0.0001	
Key	•	•				

5 = grams

Jay Weber Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811 Lab. Reference: 202

DATE RECEIVED:

2020-3770

16/10/20

Samples analysed as received

SAMPLE ORIGIN: Project No: 7107

DATE OF INVESTIGATION: 14/10/2020

ANALYSIS REQUIRED: Volatile Organic Compounds

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

ineedo Martin Mazereeuw

Manager

Date: 23/10/20

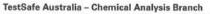
TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: <u>lab@safework.nsw.gov.au</u> W: <u>testsafe.com.au</u> ABN 81 913 830 179

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing

Page 1

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client: Stephenson Sample ID : 728104


Date Analysed 22/10/2020 Reference Number 2020-3770-1

Date Sampled 14/10/2020

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	compounds	CASTIO	μg/se	ection		Compounds	CASIN	μg/s	ection
	Aliphatic hydrocarbon	1\$ (LOQ = 5µg/co	mpound/sect	ion)		Aromatic hydrocarbon	S (LOQ = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	- 107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	115	1
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 dt 308-38-3	ND	ND
10	Cyclohexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOQ #49, #54 & #55		1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	112	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)		ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ = 25µg/compo	100.101		
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
-	Chlorinated hydrocarl		0.0770		60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1.1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25µg/compo	0.000	no	110
26	1.2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate		ND	ND
27	Chloroform		ND	ND	63	n-Propyl acetate	141-78-6	ND	ND
28	1.1.1-Trichloroethane	67-66-3	ND	ND	64	n-Butyl acetate	109-60-4	ND	ND
29	1.1.2-Trichloroethane	71-55-6	ND	ND	65	Isobutyl acetate	123-86-4	ND	ND
30	Trichloroethylene	79-00-5	ND	ND	0.5		110-19-0	ND	ND ND
31	Carbon tetrachloride	79-01-6	ND	ND	66	Ethers (LOQ = 25µg/compound Ethyl ether	I	ND	ND
32	Perchloroethylene	56-23-5	ND	ND	67	tert-Butyl methyl ether (MTRE)	60-29-7	ND	ND
33	1,1,2,2-Tetrachloroethane	127-18-4	ND	ND	68		1634-04-4	ND	ND
34	Chlorobenzene	79-34-5	ND	ND	00	Tetrahydrofuran (THF)	109-99-9	ND	
35	1.2-Dichlorobenzene	108-90-7	ND	ND	69	Glycols (LOQ - 25µg/compour PGME		NID	ND
36	1.4-Dichlorobenzene	95-50-1	ND		70		107-98-2	ND	ND
30		106-46-7		ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
17	Miscellaneous (LOQ #37- Acetonitrile	1			-	PGMEA	108-65-6	ND	ND
37	n-Vinyl-2-pyrrolidinone	75-05-8	ND	ND ND	72	Cellosolve acetate DGMEA	111-15-9	ND	ND
20	n- v myt-2-pytronumone	88-12-0		ND	15	DOMEA	112-15-2	ND	ND
	Total VOCs (LOQ =50µg/com	pound/section)	228	ND		Worksheet check		8	2020-377

2020-3770-1-2

Page 2 of 4

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS Date Sampled 14/10/2020

Client: Stephenson

Date Analysed 22/10/2020

Sample ID : 728105

Reference Number 2020-3770-2

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
_			μg/se	ection				µg/section	
-	Aliphatic hydrocarbon	\$ (LOQ - 5µg/ce				Aromatic hydrocarbons	6 (LOQ = 1µg/co	the second s	I COLUMN
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	130	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	186-42-3 & 188-32-3	ND	ND
10	Cyclohexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOQ #49, #54 & #55	-5µg/c/s; #50, #51	1, #52 & #53	-25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	120	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ = 25µg/compo		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarl		38/02	(section)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1.1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25µg/compo		1.0	110
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	1	ND	ND
27	Chloroform		ND	ND	63	n-Propyl acetate	141-78-6	ND	ND
28	1.1.1-Trichloroethane	67-66-3	ND	ND	64	n-Butyl acetate	109-60-4	ND	ND
29	1,1,2-Trichloroethane	71-55-6	ND	ND	65	Isobutyl acetate	123-86-4	ND	ND
30	Trichloroethylene	79-00-5	ND	ND	0.5		110-19-0	ND	ND
31		79-01-6	ND	ND	66	Ethers (LOQ = 25µg/compound	1	ND	NID
32	Carbon tetrachloride	56-23-5	5.375		67	Ethyl ether	60-29-7	ND	ND
33	Perchloroethylene	127-18-4	ND	ND		tert-Butyl methyl ether (serses	1634-04-4	ND	ND
-	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOQ = 25µg/compour	1		
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
_	Miscellaneous (LOQ #37-	5µg & #38=25µg			71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
+	Total VOCs (LOQ =50µg/com	pound/section)	250	ND		Worksheet check			2020-3770

2020-3770-1-2

Page 3 of 4

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

ND = Not Detected

All compounds numbered 1-73 are included of this analysis in the scope of NATA accreditation

Method : Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Number : WCA.207

Limit of Quantitation : 5µg/section; 25µg/section for oxygenated hydrocarbons except acetone, MEK and MIBK at Sug/section. Brief Description : Volatile organic compounds are trapped from the workplace air onto charcoal tubes by the use of

a personal air monitoring pump. The volatile organic compounds are then desorbed from the charcoal in the laboratory with CS₂. An aliquot of the desorbant is analysed by capillary gas chromatography with mass spectrometry detection.

PGME : Propylene Glycol Monomethyl Ether PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty

The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data.

Ouality Assurance

 Quality Assurance

 In order to ensure the highest degree of accuracy and precision in our analytical results, we undertake extensive intra-and inter-laboratory quality assurance (QA) activities. Within our own laboratory, we analyse laboratory and field blanks and perform duplicate and repeat analysis of samples. Spiked QA samples are also included routinely in each run to ensure the accuracy of the analyses. WorkCover Laboratory Services has participated for many years in several national and international inter-laboratory comparison programs listed below:

 Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK;

 Quality Management in Occupational and Environmental Medicine QA Program, conducted by the Institute for Occupational, Social and Environmental Medicine, University of Erlangen – Nuremberg, Germany;

 Quality Control Technologies QA Program, Australia;

 Royal College of Pathologists QA Program, Australia.

2020-3770-1-2

Page 4 of 4

TestSafe Australia – Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817