

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> 52A Hampstead Road Auburn NSW 2144 Tel: (02) 9737 9991

E-Mail: info@stephensonenv.com.au

EMISSION TEST REPORT (ETR) No. 7010/S25380A/19

STYRENE SCRUBBER EFFICIENCY MONITORING

ROCBOLT RESINS PTY LIMITED

SMEATON GRANGE, NSW 2567

PROJECT No.: 7010/\$25380A/19

Date of Survey: 15 October 2019

DATE OF ISSUE: 22 OCTOBER 2019

NATA accredited laboratory number 15043. Accredited for Compliance with ISO/IEC 17025 - Testing

EMISSION TEST REPORT No. 7010/S25380A/19

The sampling and analysis was commissioned by:

Client Organisation: Rocbolt Resins Pty Limited

> Contact: Andrew Sykes

Address: 40-44 Anzac Avenue, Smeaton Grange NSW 2567

Telephone: 02 4647 8388

Email: asykes@rocboltresins.com.au

Project Number: 7010/S25380A/19

Test Date: 15 October 2019

Production Conditions: Normal operating conditions during testing

Dry gas density, volumetric flowrate, velocity, Analysis Requested:

> temperature, moisture, molecular weight of stack gases, nitrogen oxides, particulate matter less than 10 microns, volatile organic compounds including styrene and

benzene

Sample Locations: Styrene dry scrubber exhaust stack

Sample ID Nos.: See attachment A

Identification The samples are labelled individually. Each label

recorded the testing laboratory, sample number,

sampling location (or Identification) sampling date and

time and whether further analysis is required.

This report cannot be reproduced except in full.

Test	Test Method Number for Sampling & Analysis	NATA Laboratory Analysis By: NATA Accreditation No. & Report No.
Dry Gas Density	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, ETR No. 7010
Moisture	NSW TM-22, USEPA M4	SEMA, Accreditation No. 15043, ETR No. 7010
Molecular Weight of Stack Gases	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, ETR No. 7010
Oxides of Nitrogen	NSW TM-11, USEPA M7E	SEMA, Accreditation No. 15043, ETR No. 7010
Particulate Matter less than 10 microns	NSW OM-5, USEPA M201A	SEMA, Accreditation No. 15043, Particle Test Report No. 2147
Stack Pressure	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7010
Stack Temperature	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7010
Velocity	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7010
Volatile Organic Compounds (styrene, benzene, total as n-Propane)	NSW TM-34, USEPA M18	TestSafe Australia, Accreditation No. 3726, Report No. 2019-4732
Volumetric Flowrate	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, ETR No. 7010

Deviations from Test Methods

Nil

Sampling Times

NSW - As per Test Method requirements or if not specified in the Test Method then as per Protection of the Environment Operations (Clean Air) Regulations Part 2.

Reference Conditions

NSW - As per

- (1) Environment Protection Licence conditions, or
- (2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided in Attachment A.

Issue date: 22 October 2019

P W Stephenson Managing Director

1.1 SCOPE OF WORK

The scope of work undertaken at Rocbolt Resins, Smeaton Grange, on October 15, 2019 is tabled below and was requested by Rocbolt Resins to address a requirement of their Environment Protection Licence (EPL) 20944.

Parameter	Styrene Scrubber Exhaust Stack	Units of Measure	NSW Approved Test Method
VOCs including Styrene and Benzene	2 samples	mg/m³ or g/s	OM-2, TM-34
Particulate matter less than 10 microns	1 sample	mg/m³	OM-5, USEPA 201A
Nitrogen Oxides	Continuous	mg/m³	TM-11
Dry Gas Density	✓	kg/m²	TM-23
Moisture	✓	%	TM-22
Molecular weight of stack gases	✓	g.g-mole	TM-23
Temperature	✓	K	TM-2
Velocity	✓	m/s	TM-2
Volumetric flowrate	✓	m³/s	TM-2

Key:

kg/m³ = kilograms per cubic metre

mg/m³ = milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)

g/s = grams per second

% = percentage

g.g-mole=grams per gram moleg/s=grams per second $\circ C$ =degrees CelsiusTM=test method

m/s = metres per second m^3/s = dry cubic metre per second 0°C and 101.3 kilopascals (kPa)

AS = Australian Standard

hr = hour

* method agreed to by Chris Kelly, NSW EPA. Refer Benbow Environmental.

1.2 PRODUCTION AND SAMPLING CONDITIONS

Rocbolt Resins personnel considered the manufacturing facility was operating under typical conditions on the day of testing. Details of production conditions are available on request.

The following description of the process information was supplied by Rocbolt Resins,

Rocbolt Resins manufactures resin capsules used as reinforcement for rocks/strata in the mining industry in conjunction with steel bolts and cables.

The capsules are a 2 part capsule, an outer plastic skin, sealed at both ends with clips and a separate inner compartment. The larger compartment consists of a highly viscous polyester resin mastic paste comprising approximately 20% polyester resin (contains Styrene monomer) & 80% inert limestone fillers. The smaller compartment consists of catalyst containing inert limestone fillers, benzoyl peroxide paste and oil or water as the carrier. The ratio of the two compartment ranges from 80:20 to 93:7 by weight.

1.3 SUMMARY OF EMISSION TEST RESULTS – 15 OCTOBER 2019

Parameter		Unit of measure	Average Measured Concentrations 15 October 2019 Exhaust Stack	EPL Licence 20944 Limit
	(as Styrene)	mg/m³	<0.17	220
Styrene	(as n-propane)	mg/m³	<0.069	
	MER (as Styrene)	Unit of measure Concentration 15 October 20 Exhaust States e) mg/m³ <0.17	<6.1 X 10-5	
Danasa	(as Benzene)	Unit of measure 15 October 2019 Exhaust Stack Li mg/m³ < 0.17		
Benzene	MER (as Benzene)	g/s	<6.1 X 10-5	
VOC	(as n- propane)	g/s	<2.5 X 10 ⁻⁵	
DM	concentration	mg/m³	0.3	
PM ₁₀	MER	g/s	0.0001 (1 X 10 ⁻⁴)	
Oui dos of mitus con	concentration	mg/m³	2	
Oxides of nitrogen	MER	g/s	0.0007 (7 X 10 ⁻⁴)	
Stack temperature		°C	23	
Velocity		m/s	6	
Volumetric flow		m³/s	0.36	
Moisture		%	1	
Molecular weight dry	stack gas	g/g mole	28.8	
Gas Density		kg/m³	1.29	
Stack pressure		kPa	101.3	

Key:	EPL	=	Environment Protection Licence
	MER	=	Mass Emission Rate
	VOC	=	Volatile organic compounds
	mg/m³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	g/s	=	grams per second
	°C	=	degrees Celsius
m/s		=	metres per second
	m^3/s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	%	=	percentage
	<	=	less than
	g/g mole	=	grams per gram mole
	kg/m³	=	Kilograms per cubic metre
	kPa	=	Kilo Pascals
		=	not specified in EPL 20944

1.4 ESTIMATED UNCERTAINTY OF MEASUREMENT

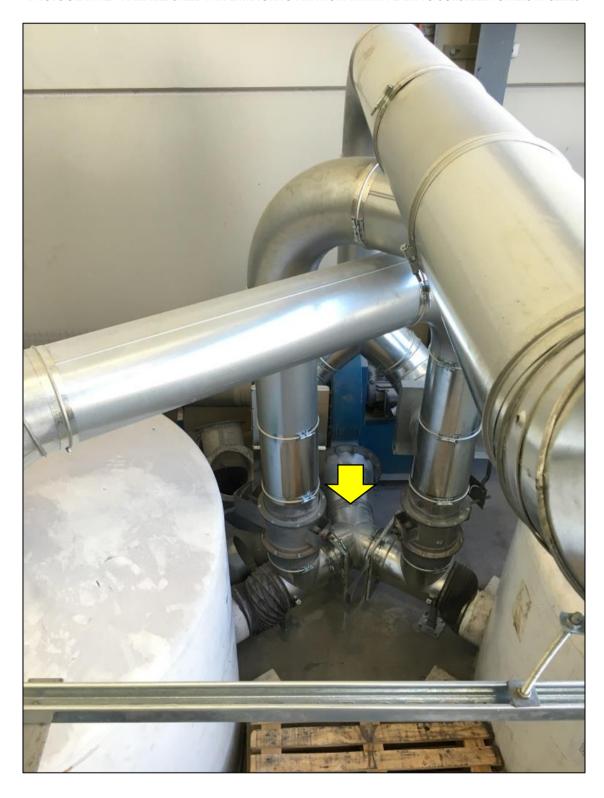
Pollutant	Methods	Uncertainty
Moisture	AS4323.2, NSW TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA M7E	15%
Oxygen and Carbon Dioxide	NSW TM-24, TM-25, USEPA M3A	1% actual
Particulate matter less than 10 microns	NSW OM-5, USEPA M201A	50%
Velocity	AS4323.1, NSW TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	NSW TM-34, USEPA M18	25%
Styrene as Volatile Organic Compound (adsorption tube)	NSW TM-34, USEPA 18	25%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source - Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.


Note: ISO 9096 is for 20-1000 mg/m^3 -which AS4323.2 is based on. Note DSEN 13284-1 testing for < 5 mg/m^3 correlates to 5 mg/m^3 with most quoted uncertainties of \pm 5.3 mg/m^3 @ 6.4 mg/m^3 . From Clean Air Engineering in the United States the lowest practical limit of USEPA M5 is 5 mg/m^3 under lab conditions.

1.5 DRY SCRUBBER SAMPLING LOCATIONS

PHOTOGRAPH 2 VARIABLE SPEED FAN EXTRACTING AIR FROM WITHIN PLANT TO SCRUBBER TOWERS IN SERIES

| NEXTOX* | MAXIMUM OPERATING INSTRUCTIONS AT LICENSON OF A STALLATION OPERATING INSTRUCTIONS AT LICENSON OF A STALLATION OPERATING INSTRUCTIONS AT LICENSON OF A STALLATION OPERATING INSTRUCTIONS AT LICENSON OPERATING INSTRUCTION OPERA

PHOTOGRAPH 3 DRY SCRUBBER MANUFACTURER'S DETAILS

1.6 INSTRUMENT CALIBRATION DETAILS

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date
908	Gas Meter	14-Jun-19	14-Jun-20
647	Stopwatch	05-Jul-19	05-Jan-20
857	Digital Temperature Reader	04-Jul-19	04-Jan-20
769	Thermocouple	04-Jul-19	04-Jan-20
916	Nozzle PM ₁₀ Head	17-Jan-19	17-Jan-20
815	Digital Manometer	21-Jan-19	21-Jan-20
613	Barometer	21-Jan-19	21-Jan-20
726	Pitot	23-Jul-19	23-Jul-2020 Visually inspected On-Site before use
928	Balance		Response Check with SEMA Site Mass
834	Personal Sampler	14-Mar-19	14-Mar-20
764	TSI Thermal Mass Flowmeter	22-Aug-19	22-Feb-20
946	Combustion Analyzer	09-Jul-19	09-Jan-20
929	Calibrated Site Mass	14-Mar-19	14-Mar-20
	Gas Mixtures used for Ana	lyser Span Response	
Conc.	Mixture	Cylinder No.	Expiry Date
400 ppm 400 ppm 401 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB6150	05-May-20
262 ppm 263 ppm 249 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB 4441	23-Jun-21
0.099% 9.8% 10.1%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	ALWB 5361	17-Jul-21

1.7 CONCLUSIONS

Emissions were monitored on the discharge side of the two dry carbon scrubbing units connected in series at the Rocbolt Resins manufacturing facility with the following result:

- The average Styrene emission concentration (reported as Styrene) was less than 0.17 mg/m³ which was compliant with the EPL limit of 220 mg/m³ and the styrene mass emission rate was less than 6.1 X 10-5 g/s.
- \circ The average benzene emission mass emission rate reported as benzene was less than 6.1 X 10^{-5} g/s;
- o The average total VOC mass emission rate (reported as n-propane) was $2.5 \times 10^{-5} \text{ g/s}$;
- \circ The average emission concentration of Oxides of Nitrogen (NO_x) (expressed as nitrogen dioxide (NO₂)) was 2 mg/m³ and the NO_x mass emission rate of 0.0007 g/s.
- \circ The average Particulate Matter less than 10 microns (PM₁₀) emission concentration was 0.3 mg/m³ and the PM₁₀ mass emission rate was 0.0001 g/s.
- Rocbolt Resins advised that the variable speed extraction fan serving the scrubber system was running at its normal set point (20 Hertz) during the system efficiency testing. This is of the order of 50% of total flow;
- However, the fan speed is variable depending on demand for extraction within the plant. Rocbolt Resins advise that this is both an energy conservation and scrubber efficiency optimisation policy.

	ETR No.7010/S25380A/19
ATTACHMENT A - NATA CERTIFICATES OF ANALYSIS	

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> 52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991

E-Mail: info@stephensonenv.com.au

Particle Test Report No. 2147

The analysis was commissioned by SEMA on behalf of:

Client Organisation: Rocbolt Resins Pty Limited

Contact: Andrew Sykes

Address: 40-44 Anzac Avenue, Smeaton Grange, NSW 2567

Telephone: 02 4647 8388

Email: asykes@rocboltresins.com.au

Project Number: 7010/S25380A/19

Analysis Requested: Gravimetric - OM-5

Chain of Custody

Number

S25474

Date Analysis

Completed:

16 October 2019

No. of Samples Tested: 1

Sample Locations: Stack

Sample ID Nos.: 727720

Filter ID Nos.: 15253

This report cannot be reproduced except in full.

NATA
WORLD FEE COMMED ACCREDITATION

NATA accredited laboratory number 15043. Accredited for Compliance with ISO/IEC 17025.

P: Quality System/Report Templates Version: 2.5

PAGE 1 OF 2

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

PARTICLE TEST REPORT No. 2147

Identification

The filters are labelled individually. Each label recorded the testing laboratory, sample number, sampling location (or Identification) sampling date and time and whether further analysis is required.

Test

Analysis Test Method

 PM_{10}

US EPA 201A

Deviations from Test Methods

Nil

Issue Date 16 October 2019

Jay Weber

Testing Supervisor

Gravimetric Results - Test Report No. 2147

Sample	Sample ID	Filter ID No	Sampling	Analysis Date	Sample Mass
Location	No.		Date	(Completed)	(g)
Stack R1 PM ₁₀	727720	15253	15/10/2019	16/10/2019	0.00024

Key: g = grams

Jay Weber

Lab. Reference:

2019-4732

Stephenson Environmental Management Australia PO Box 6398

SILVERWATER NSW 1811

Samples analysed as received

SAMPLE ORIGIN: 7010

DATE OF INVESTIGATION: 15/10/2019 DATE RECEIVED:

16/10/19

ANALYSIS REQUIRED: VOCs

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

Manager

Date: 18/10/19

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: lab@safework.nsw.gov.au W: testsafe.com.au ABN 81 913 830 179

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

Page 1

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Jay Weber Sample ID : 727718 Date Sampled: 15-Oct-2019 Reference Number le: 2019-4732-1

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASTIO	μg/section		1.0	Compounds	Cristio	μg/section	
	Aliphatic hydrocarbon	S (LOQ = 5μg/ce	ompound/sect	ion)		Aromatic hydrocarbon	S (LOQ = 1μg/co	ompound/secti	on)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOQ #49, #54 & #55	=5μg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ = 25µg/compo	und/section)		
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarb		ıg/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25µg/compo			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOQ = 25µg/compound			
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOQ = 25µg/compour			
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOQ #37=	-	compound/se	ction)	71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
\top	Total VOCs (LOQ =50μg/comp	ound/section)	ND	ND	\Box	Worksheet check		yes	yes

2019-4732

Page 2 of 4

TestSafe Australia – Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Jay Weber Date Sampled : 15-Oct-2019
Sample ID : 727719 Reference Number le : 2019-4732-2

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
\perp			μg/section					μg/section	
	Aliphatic hydrocarbon	S (LOQ = 5µg/co	ompound/sect	ion)		Aromatic hydrocarbon	S (LOQ = 1μg/co	on)	
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOQ #49, #54 & #55	=5μg/c/s; #50, #5	1, #52 & #53	-25μg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ = 25µg/compo			
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarb	ons (LOQ = 5)	ıg/compound	/section)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25µg/compo	und/section)		
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOQ = 25µg/compound			
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert-Butyl methyl ether (MTBE)	1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOQ = 25µg/compour			
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOQ #37=		compound/se	ction)	71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
		ound/section)	ND	ND		Worksheet check			yes

2019-4732 Page 3 of 4

TestSafe Australia – Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

IAC MEA NATA

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Jay Weber

ND = Not Detected

Method: Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Number: WCA.207

Limit of Quantitation: 5µg/section; 25µg/section for oxygenated hydrocarbons except acetone, MEK and MIBK at

Pagistron.

Pagistron: Volatile organic compounds are trapped from the workplace air onto charcoal tubes by the use of a personal air monitoring pump. The volatile organic compounds are then desorbed from the charcoal in the laboratory with CS₂. An aliquot of the desorbant is analysed by capillary gas chromatography with mass spectrometry detection.

PGME : Propylene Glycol Monomethyl Ether PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty

The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data.

Quality Assurance
In order to ensure the highest degree of accuracy and precision in our analytical results, we undertake extensive intraand inter-laboratory quality assurance (QA) activities. Within our own laboratory, we analyse laboratory and field
blanks and perform duplicate and repeat analysis of samples. Spiked QA samples are also included routinely in each run
to ensure the accuracy of the analyses. WorkCover Laboratory Services has participated for many years in several
national and international inter-laboratory comparison programs listed below:

Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK;

- Quality Management in Occupational and Environmental Medicine QA Program, conducted by the Institute for Occupational, Social and Environmental Medicine, University of Erlangen Nuremberg, Germany;

Quality Control Technologies QA Program, Australia;
 Royal College of Pathologists QA Program, Australia.

2019-4732

Page 4 of 4

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817